Перевод: с русского на английский

с английского на русский

задача максимизации

  • 1 задача максимизации

    1) Computers: maximization problem
    2) Quality control: max problem

    Универсальный русско-английский словарь > задача максимизации

  • 2 задача максимизации

    Русско-английский научно-технический словарь Масловского > задача максимизации

  • 3 задача максимизации линейного вектора

    Универсальный русско-английский словарь > задача максимизации линейного вектора

  • 4 общая задача максимизации

    2) Mathematics: GMP (general maximum problem)
    3) Quality control: general maximum problem

    Универсальный русско-английский словарь > общая задача максимизации

  • 5 основная задача максимизации

    Mathematics: BMP (basic maximum problem), basic maximum problem

    Универсальный русско-английский словарь > основная задача максимизации

  • 6 основная задача максимизации

    Русско-английский научно-технический словарь Масловского > основная задача максимизации

  • 7 исходная задача

    В ЗМП потребитель выбирает потребительский набор из множества вальрасовых бюджетов, чтобы максимизировать уровень своей полезности. — In the UMP, the consumer chooses a consumption bundle in the Walrasian budget set to maximize his utility level.

    ЗМР является "двойственной" (к) ЗМП. Она отражает ту же цель эффективного использования покупательной способности потребителя, меняя роли целевой функции и ограничения. — The EMP is "dual" to the UMP. It captures the same aim of efficient use of the consumer's purchasing power while reversing the roles of objective function and constraint.

    Russian-English Dictionary "Microeconomics" > исходная задача

  • 8 двойственная задача

    Термин "двойственная" должен наводить на размышления. Обычно он применяется к парам задач и понятий, которые формально отличаются друг от друга только сменой роли количеств и цен, и/или максимизации и минимизации, и/или целевой функции и ограничения. — The term "dual" is meant to be suggestive. It is usually applied to pairs of problems and concepts that are formally similar except that the role of quantities and prices, and/or maximization and minimization, and/or objective function and constraint are reversed.

    Russian-English Dictionary "Microeconomics" > двойственная задача

  • 9 максимизация прибыли

    1. profit maximization

     

    максимизация прибыли
    Задача максимизации прибыли состоит в определении положения динамического равновесия между спросом и предложением, в нахождении оптимального сочетания объема реализации и цены на выпускаемую продукцию.
    [ http://www.lexikon.ru/dict/fin/a.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > максимизация прибыли

  • 10 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 11 дифференциальные игры

    1. differential games

     

    дифференциальные игры
    Игры, в которых в отличие от других (например, матричных) игр стратегии выбираются по ходу игры и выигрыш каждого участника зависит от траекторий управления, принятых всеми участниками игры. Число ходов и вместе с ними стратегий может быть бесконечно. Классификация дифференциальных игр может строиться по разным основаниям: по числу игроков (задача управления может рассматриваться как особая Д.и. с одним участником), по характеру платежных функций: игры с нулевой и с ненулевой суммой (в зависимости от того, равна или не равна нулю общая сумма выигрышей всех игроков); возможно также разделение на стохастические и детерминированные, дискретные и непрерывные игры. Каждый игрок выбирает в течение игры значения своего вектора управляющих параметров, которые образуют траекторию управления. Причем такую траекторию, от которой ожидает максимизации своего выигрыша. Когда игрокам известны значения всех текущих фазовых координат — игра с полной информацией. В противоположном случае — игра с неполной информацией.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > дифференциальные игры

  • 12 олигопольные эксперименты

    1. oligopolistic experiments

     

    олигопольные эксперименты
    Машинные или человеко-машинные эксперименты, воспроизводящие ситуацию олигополии; проводятся в исследовательских и дидактических целях. Строятся в форме деловой игры, в которой участники принимают для каждого периода (такта игры) решения о характеристиках «выпускае­мых» ими товаров, объемах производства, затратах на рекламу, о ценах и инвестициях. Результаты решений с помощью компьютера представляются в виде планов, балансов доходов и убытков, обзоров состояния рынка и других расчетов. Полученная информация служит для принятия решений в последующих периодах и т.д. Множество испытаний (проигрываний) позволяет анализировать мотивы и эффективность экономического поведения участников игры. О.э. дают возможность верифицировать экономические теории и гипотезы, касающиеся, например, инвестиционной или торговой политики фирм. Для иллюстрации остановимся на одном простейшем О.э. Имеются три «фирмы» поставщика однородного товара и множество потребителей. Формулируется модель эксперимента, в которой цена товара выступает как функция объема предложения P = 20 — (X1 + X2 + X3), где P — цена, X1 + X2 + X3 — соответственно, сумма предложений трех фирм; 20 — некоторый заданный параметр. Для упрощения принимается, что фирмы не имеют издержек. Тогда прибыль — Gi = ? pxi, i = 1, 2, 3. Задача каждой фирмы состоит в максимизации целевой функции Gi ® max. Фирму представляет группа студентов, принимающих решения об объеме «продаж». Решения принимаются каждой группой независимо от других, обмен информацией (или, проще, сговор между фирмами) исключен. Далее проигрывается серия испытаний, результаты которых фиксируются в таблице. Отсюда видно, что, например, в первом испытании третья фирма «выбросила на рынок» 10 единиц товара, а на деле свела прибыли всех фирм к нулю (в том числе и свою собственную). А вот в четвертом испытании та же фирма получила высокую прибыль. Таблица позволяет судить о качестве решений участников эксперимента, регистрация пояснений о причинах принятия тех или иных решений — анализировать мотивы их «экономического поведения». Разумеется, это лишь крайне упрощенный пример. О.э. усложняются введением показателей издержек и производственных мощностей для каждой фирмы, вводятся параметры инвестиций (тогда производственные мощности могут изменяться в определенных пределах). Строятся модели рынков, включающие не только поставщиков, но и потребителей и т.д. В ряде случаев на основании наблюдений в ходе эксперимента строится математическая модель, которая затем проигрывается на компьютере. Такое соединение натурного и имитационного эксперимента позволяет углублять анализ явлений, проверять выводы и гипотезы.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > олигопольные эксперименты

См. также в других словарях:

  • Задача максимизации — [maximization problem] см. Максимизация …   Экономико-математический словарь

  • ЗАДАЧА О НАЗНАЧЕНИЯХ — (ASSIGNMENT PROBLEM) задача о наилучшем распределении некоторого числа работ между таким же числом исполнителей при условии взаимно однозначного соответствия между мн вами работ и исполнителей. При ее решении ищут оптим. назначение из условия… …   Глоссарий терминов по грузоперевозкам, логистике, таможенному оформлению

  • Нелинейное программирование — (NLP, англ. NonLinear Programming)  случай математического программирования, в котором целевой функцией или ограничением является нелинейная функция. Задача нелинейного программирования ставится как задача нахождения оптимума… …   Википедия

  • З — Забалансовое финансирование (Оff balance sheet finance) Забалансовые счета (Оff balance accounts) Зависимая компания (предприятие) (affiliated company) …   Экономико-математический словарь

  • Маршалловский спрос — В теории потребителя маршалловский спрос количество товара, который потребитель приобретет при заданных ценах, доходе, решая задачу максимизации своей полезности. Назван по имени английского математика Альфреда Маршалла, иногда также называется… …   Википедия

  • ПРИБЫЛЬ — (англ. profit) – разница между доходами, полученными от реализации продукции, основных средств и иного имущества, выполненных работ, оказанных услуг, внереализационной деятельности, и начисленной суммой затрат на производство, реализацию… …   Финансово-кредитный энциклопедический словарь

  • максимизация прибыли — Задача максимизации прибыли состоит в определении положения динамического равновесия между спросом и предложением, в нахождении оптимального сочетания объема реализации и цены на выпускаемую продукцию. [http://www.lexikon.ru/dict/fin/a.html]… …   Справочник технического переводчика

  • ИССЛЕДОВАНИЕ ОПЕРАЦИЙ — построение, разработка и приложения математич. моделей принятия оптимальных решений. Содержанием теоретич. аспекта И. о. являются анализ и решение математич. задач выбора в заданном множестве допустимых решений Xэлемента, удовлетворяющего тем или …   Математическая энциклопедия

  • Линейное программирование — [linear programming] область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны… …   Экономико-математический словарь

  • Линейное программирование — [linear programming] область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны… …   Экономико-математический словарь

  • линейное программирование — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] линейное программирование Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между… …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»